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SUMMARY

To investigate the time-dependent non-axisymmetric flow between two rotating cylinders, or the so-called
Couette–Taylor problem, a numerical model to solve the three-dimensional Navier–Stokes equations is
established. The projection method is employed to obtain the pressure Poisson equation first. Then the
velocity is solved from the equations of motion by using a semi-implicit finite difference scheme. The
numerical solution thus obtained has the accuracy of second-order in both time and space discretizations.
The Couette–Taylor flow patterns are obtained from direct numerical simulation for the states or
regimes of steady circular Couette flow, steady Taylor vortices, and their intermediate processes, as well
as also the onset of periodic spiral vortices. The present numerical simulation has also confirmed the
location of the transitional boundary of the flow states of the experimental study made by Andereck et
al. [C.D. Anderek et al., J. Fluid Mech., 164, 155–183 (1986)] Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Motion of fluids between two coaxial rotating cylinders or the so-called Couette–Taylor
problem [1–3] is a very classic, fascinating and important subject in fluid mechanics; therefore,
for a century, it has drawn a lot of researchers in all aspects of theoretical, computational and
experimental investigations. There are several flow regimes existing in an incompressible fluid
between two concentric independently rotating cylinders. Hydrodynamic instability and flow
transition between states or regimes were determined by the inner and outer cylinder Reynolds
numbers Re1 and Re2 respectively. The flow regimes in general consist of different spatial and
temporal patterns. For time-independent axisymmetric flows, the Couette and Taylor vortex
flows are most often observed. There are also non-stationary, non-axisymmetric flows that are
more unstable and complex, such as spiral vortex flows, wavy vortex flows, wavy spirals,
modulated wavy vortices, twists and turbulent flows, etc. Those flow regimes can be found
lucidly from the recent experimental works, e.g. Andereck et al. [4].

According to experimental observations of Andereck et al., most flows in general are
non-stationary and non-axisymmetric (three-dimensional) in nature, except the simple flow
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regimes of the circular Couette and Taylor vortex flows. However, most of the early numerical
studies are confined to the axisymmetric flow cases only [5–8]. The assumption of axisymmetry
in the Couette–Taylor system is an approximate approach in order to simplify the analysis.
However, the validity of the existence of axisymmetric flows needs further examination. Since
under the phenomena of bifurcation and symmetry breaking to get a more stable state, a flow
with certain symmetries may lose some of its symmetric properties when one or more
parameter variable crosses some critical value. In the same thinking, a steady flow may become
time-dependent, i.e. periodic, aperiodic or chaotic, as far as time symmetry breaking is
concerned. Therefore, a model with the axisymmetric assumption a priori is very restrictive to
describe the more general flow behaviors of this Couette–Taylor problem. A more reasonable
approach is to start with a transient 3D form, which will automatically render the subset of the
axisymmetric flow patterns, when the axisymmetric characteristics should be maintained.

In this study, a semi-implicit projection method is proposed to solve the unsteady, 3D flow
in the cylindrical co-ordinates system (Liao and Young [9]). The numerical code using the
finite difference schemes allows the direct numerical simulations for the three regimes of the
Couette–Taylor system to be performed. That is, (1) the steady circular Couette flow, (2) the
steady axisymmetric Taylor vortex flow, and (3) the periodic spiral vortex flow. These flow
patterns of numerical simulation are confirmed with the location of the transitional boundaries
of the flow regimes obtained by the experimental observations of Andereck et al. Additional
flow states are also obtained from this model, such as the modulated wavy vortices. However,
due to want of space, it will be reported in another paper.

2. NUMERICAL FORMULATION

2.1. Go6erning equations

The flow of an incompressible fluid with kinematic viscosity n between two rotating
cylinders, of height H and with inner radius r1 and outer radius r2, was investigated. The inner
cylinder rotates with angular velocity V1 and the outer cylinder rotates with angular velocity
V2 respectively. The geometry of the flow in the cylindrical co-ordinates system is shown in
Figure 1. The governing equations in dimensionless forms are the continuity and momentum
equations as follows:
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where r, u and z are the cylindrical co-ordinates with corresponding velocity components u, 6
and w respectively; p is the dynamic pressure of fluid, t is the time. Re=r1V1d/y is the
Reynolds number of the flow, d=r2−r1 is the gap between two cylinders. As=H/d is the
aspect ratio of the cylinder, and
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is the Laplacian operator in the cylindrical co-ordinate system.

2.2. Initial condition and boundary conditions

The initial condition is the motionless fluid, i.e.

t50, u=6=w=0, r1/d5r5r2/d, 05u52p, 05z5As. (5)

The boundary conditions are described in the following:

1. On the inner cylinder wall

u=0, 6=1.0, w=0 on r=r1/d, 05u52p, 05z5As. (6)

2. On the outer cylinder wall

u=0, 6=r2V2/r1V1, w=0 on r=r2/d, 05u52p, 05z5As. (7)

3. On the top and end wall, the periodic condition of the cylinder in z-direction

(u
(z

=
(6

(z
=w=0 on z=0, As, r1/d5r5r2/d, 05u52p. (8)

4. Periodic conditions in the u-direction

u(r, u, z)=u(r, u+2np, z),
6(r, u, z)=6(r, u+2np, z),
w(r, u, z)=w(r, u+2np, z),
p(r, u, z)=p(r, u+2np, z).

(9)

Figure 1. The geometry of the flow in the cylindrical co-ordinates system.
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Figure 2. The MAC staggered grid system in the numerical model.

If the flow starts from a motionless fluid with the periodic boundary condition of Equation
(8), the radial velocity u, and the axial velocity w, will be zero for all time, except the azimuthal
velocity 6, in the numerical calculations. To obtain a more complex flow, the introduction of
a disturbance is imperative. A simple way to do is to apply the non-slip boundary condition
on the end walls first to get the three velocity components, and then replaced by the periodic
boundary condition of Equation (8) afterwards to simulate the flow regimes.

2.3. Numerical method

2.3.1. Compound scheme for 6elocity. The finite difference method is used to solve the
governing equations. An implicit Crank–Nicolson scheme is applied to discretize the second
derivative terms of u and an explicit Adams–Bashforth scheme is used to approximate the
other terms in the momentum equations. The implicitness of u discretization is to avoid the
excess computational time to overcome the constraint of numerical instability. Thus, momen-
tum equations (Equations (2)–(4)) are discretized as follows:�
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where dr, du, dz are the difference operators, and Dr, Du, Dz are the grid sizes in r-, u-,
z-directions respectively. Figure 2 shows the marker-and-cell (MAC) staggered grid system
that is used in the numerical model.

Figure 3. The flow structures of u–w vector and u, 6, w and p contours on any meridian plane at t=400 for
Re1=350, Re2= −690.
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Figure 4. The steady state solution of 6 and p contours on any meridian plane for Re1=350, Re2= −690.

2.3.2. Semi-implicit projection method for pressure. Taking the divergence to the discretized
momentum equations and neglecting some higher-order terms in u-direction, the pressure
Poisson equation is obtained and stated as follows:
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and the periodic boundary condition in the u-direction is

pn+1(r, u, z)=pn+1(r, u+2np, z). (14e)

In the MAC staggered grid system, the boundary conditions Equations (14a)–(14d) are
satisfied automatically and are not needed eventually. The detailed procedures will be
described as follows:

The discretized differencing equation in the z-direction of Equation (13) at k=1/2 point (first
grid point in the z-direction) is
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Figure 5. The flow structure of u–w vector and u, 6, w and p contours on any meridian plane at the steady state for
Re1=300, Re2=100.
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Figure 6. The steady state solution of u, 6, w and p contours at z=0.64 for Re1=300, Re2=100.

This relation appears in both sides of Equation (13a), therefore, one may take hn=0 and also
(dz/Dz)p=0 on z=0 boundary. The remaining three boundary conditions in Equations (14a),
(14b) and (14d) are treated by using the same argument. If f n=0 on r=r1/d and r=r2/
d ; hn=0 on z=0 and z=As, then the Equations (14a)–(14d) can be rewritten as

dr

Dr
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d
, and (15a)

on r=
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d
, (15b)

dz

Dz
pn+1=0 on z=0, and (15c)

on z=As. (15d)
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Hence pn+1 can be solved from the pressure Poisson equation (13) as well as from the
boundary conditions (14e) and (15) by using the fast Fourier transform (FFT) and a
tridiagonal matrix algorithm (TDMA). The details are described as follows:

Let

pi+1/2, j+1/2,k+1/2
n+1 (r, u, z)= %

N−1

m=0

%
L−1

l=o

aml(r) exp(imuj+1/2) cos lpzk+1/2;

j=0, 1, 2, . . . , N−1; k=0, 1, 2, . . . , L−1, (16)

then the boundary conditions Equations (14e), (15c) and (15d) will be fully satisfied. Expand-
ing the right-hand-side of Equation (13) by

Ri+1/2, j+1/2, k+1/2
n (r, u, z)= %

N−1

m=0

%
L−1

l=0

bml(r) exp(imuj+1/2) cos lpzk+1/2;

j=0, 1, 2, . . . , N−1; k=0, 1, 2, . . . , L−1. (17)

Substituting Equations (16) and (17) into (13), we have

Figure 7. The flow structures of u–w vector and u, 6, w and p contours on the u=0 meridian plane at t=1125.8 for
Re1=240, Re2= −300.
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Figure 8. The velocity and pressure contours on the z=2.4 plane at t=1125.8 for Re1=240, Re2= −300.
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One can obtain bml(r) from Equation (17) by the FFT, then solving aml(r) from Equation
(18), which is a tridiagonal matrix system and therefore can be solved easily. Finally,
pn+1(r, u, z) will be solved from Equation (16) by using the inverse FFT.

The velocities un+1, 6n+1 and wn+1 can be solved then from the discretized momentum
equations (10)–(12) after pn+1 were solved from the above algorithm. Since the periodic
boundary condition in u is adopted, the algebraic system for velocity has the following form:
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This system is then solved by a TDMA with some modifications to take care the terms coming
from the u-direction.

The proposed projection method has the following advantages: (1) the continuity equation
will be satisfied up to second-order, which is consistent with the requirement of solution
accuracy; (2) the numerical solution has second-order accuracy in both time and space
discretization; (3) iterating procedures between the pressure and velocity solver are waived, so
that a more efficient algorithm is realized.

3. COMPUTATIONS AND DISCUSSION

The numerical simulations for r1=5.25 cm, r2=5.946 cm and H=4.0 cm, with several
different Re1, and Re2 were used in this study. This corresponds to the case study of radius
ratio h=r1/r2=0.883, and aspect ratio As=5.75. The flow states depend on the inner and
outer cylinder Reynolds numbers Re1=r1V1d/y and Re2=r2V2d/y respectively. The negative
Reynolds numbers represent the clockwise rotating of the cylinder while the positive Reynolds
numbers are for counter-clockwise rotating. Three case studies are performed to demonstrate
the three different flow regimes: namely, (1) a steady circular Couette flow, (2) a steady

Figure 9. The u contours on the u=0, p/4, p/2, 3p/4, p, 5p/4, 3p/2, 7p/4 meridian planes at t=1751.4 for
Re1=240, Re2= −300.
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Figure 10. The 6 contours on the z=0.72, 2.87, 4.31, 5.03 planes at t=1751.4 for Re1=240, Re2= −300.

axisymmetric Taylor vortex, and (3) a periodic spiral vortex flow. This unsteady 3D model will
render steady and axisymmetric flow regimes in the long run, as the flow should be steady and
axisymmetric in general. Both the salient features of unsteady oscillation in time as well as
symmetry breaking in space for the spiral vortices will be illustrated for case (3) in particular.

3.1. Steady circular Couette flow (Re1=350, Re2= −690)

A 72×72×72 grid and Dt=0.01 were adopted for this case study. The flow structures of
u–w vector, as well as u, 6, w, and p contours on any meridian plane (for all u) at t=400 are
shown in Figure 3. At this intermediate stage, five-cell Taylor vortices are observed, the flow
pattern is classified as the axisymmetric Taylor vortex flow. However, as the time evolves, the
flow finally reaches a steady state solution at t=920. The criterion of the steady state solution
is defined by the L1 norm of the local acceleration being less than 10−5. At this instant, a

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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steady circular Couette flow is realized, which yields the non-zero 6 component and zero
u, w components in the velocity field. The azimuthal velocity consists of a free and a forced
vortex, as can be obtained from the analytic solution [10]. Figure 4 exhibits the 6 and p
contours on any meridian plane. From this plot, a steady circular Couette flow pattern is
vividly envisaged. It is worthwhile mentioning that the boundary between this Couette flow
and spiral flow from the Andereck et al. diagram is very close and sensitive in this case
study. The sensitivity of the transition boundary between the flow regimes requires cautious
measures to be taken in order to get the correct flow pattern, as mentioned in the works of
Andereck et al.

Figure 11. The u contours on r=7.67, 8.04, 8.29, 8.42 circumferential planes at t=1751.4 for Re1=240, Re2= −
300.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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Figure 12. The u–w vectors on the u=0, p/4, p/2, 3p/4, p, 5p/4, 3p/2, 7p/4 meridian planes at t=3753.4 for
Re1=240, Re2= −300.

3.2. Steady axisymmetric Taylor 6ortex flow (Re1=300, Re2=100)

A 48×48×72 grid and Dt=0.01 were adopted to execute the calculation. The steady state
solutions are obtained when t=583 is reached. Figure 5 shows the u–w vector and contours
of u, 6, w, p on any meridian plane. The same flow patterns are obtained for all meridian
planes. The axisymmetric property is preserved in this case study, as shown in Figure 6. The
figure depicts the contours of u, 6, w, the p at horizontal cross-section of z=0.64. It is
understood that the gap between the two cylinders is rescaled to magnify the flow structure for
easier visualization. This rescaling process is applied in the following similar figures. The
Taylor vortices are conspicuously simulated in this case as expected from the theoretical and
experimental studies [3,4]. There are four-cell Taylor vortices in this aspect ratio. The flow ends
up with a very simple steady and axisymmetric nature, which has been found previously by the
Taylor experimental investigations. In the previous numerical studies (Cliffe [6], Cliffe and
Mullin [8]), the assumption of symmetry was always introduced to reduce the computational
cost. In general, this assumption is restrictive to a simpler flow pattern with the warrant of
axisymmetry. However, the present 3D model has the capacity to render the same result for
this simple case without the provision of axisymmetric assumption.

3.3. Periodic spiral 6ortex flow (Re1=240, Re2= −300)

A 48×48×48 grid system and Dt=0.01 were used to simulate the present case. The flow
structure lies in the regime of spiral vortex flow as predicted by Andereck et al. The
corresponding angular velocity of the inner cylinder is 0.596 s−1, while the outer cylinder is
0.656 s−1. Figure 7 displays the flow fields of u–w vector and the u, 6, w, p contours on any

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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meridian plane at t=1125.8. At this moment, an axisymmetric four-cell Taylor vortex flow
prevails. The velocity and pressure contours on the z=2.4 plane are shown in Figure 8. The
concentric contours of these flow variables have illustrated that the flow is indeed an
axisymmetric Taylor vortex during this transitional period.

However, as time advances further to t=1751.4, the phenomenon of symmetry breaking in
the space occurs. The flow is no longer axisymmetric, instead a three-dimensional flow field
appears, as revealed from the flow structures of Figures 9–11. The u contours on the
u=0, p/4, p/2, 3p/4, p, 5p/4, 3p/2, 7p/4 meridian planes are portrayed in Figure 9. A 3.5
wavenumber in the axial direction is shown in the figure. The 6 contours on z=0.72, 2.87,
4.31, 5.03 horizontal planes are depicted in Figure 10. The azimuthal wavenumber is 3 in this
numerical computation. Figure 11 shows the u contours on r=7.67, 8.04, 8.29, 8.42 circumfer-
ential planes. The alternative arrangement of the vortex cells is displaced horizontally in the

Figure 13. The w contours on the z=0.72, 2.87, 4.31, 5.03 planes at t=3753.4 for Re1=240, Re2= −300.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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Figure 14. The u contours on r=7.67, 8.04, 8.29, 8.42 circumferential planes at t=3753.4 for Re1=240, Re2=
−300.

azimuthal direction. The flow structures of wavenumbers 3.5 in the axial direction and 3 in the
azimuthal direction are revealed. The non-axisymmetric character of the flow is also conspicu-
ously demonstrated. However, the formation of the spiral vortex flow is still developing. The
non-axisymmetric nature will prohibit the usage of the axisymmetric assumption to simplify
the numerical computations.

As the computing process goes on, the flow structures at t=3753.4 are shown in Figures
12–14. Figure 12 illustrates the u–w vector on the u=0, p/4, p/2, 3p/4, p, 5p/4, 3p/2, 7p/4
meridian planes. The spiral structures are revealed from this numerical simulation. The
dimensionless axial wavelength is 1.85, and the wavenumber is 3.5 in the axial direction. Figure
13 shows the w contours at z=0.72, 2.87, 4.31, 5.03 horizontal planes. An azimuthal
wavenumber of 3 is obtained. The u contours on r=7.67, 8.04, 8.29, 8.42 circumferential

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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Figure 15. The time histories of u, 6 and w at the location of (7.8, 1.6, 1.4) for Re1=240, Re2= −300.
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Figure 16. The phase diagrams of the u, 6 and w components for Re1=240, Re2= −300.
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Figure 17. The power spectrum diagrams of the u, 6 and w component for Re1=240, Re2= −300.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 827–847 (1999)
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planes are shown in Figure 14. The flow structures are quite different to those of Figure 11.
A comparison between Figures 11 and 14 indicates that the horizontal cell structure is
transferred to a tilted flow pattern. This phenomenon proves that a spiral vortex is indeed
captured.

The evolution of time histories of u, 6 and w components from t=3800 to t=4200 at the
location of (7.8, 1.6, 1.4) is illustrated in Figure 15. The corresponding phase diagrams for each
three velocities are depicted in Figure 16. The closed limit cycles for the velocities reveal that
the flow is under the category of periodic motion. Further analysis of power spectrum
diagrams, as shown in Figure 17 illustrate that there is one major frequency at f=0.0208 in
the velocity components. The modulation of the oscillating behavior convinces us that the flow
becomes periodic in the long run. The corresponding traveling wave speed for both the axial
and azimuthal directions is estimated to be 0.04. From the above mentioned statements, it is
concluded that the flow structure evolves from an axisymmetric vortex flow, then to a
transitional non-axisymmetric vortex flow, and finally to the periodic laminar spiral vortex
flow.

4. CONCLUSIONS

A semi-implicit projection method to solve the unsteady three-dimensional Navier–Stokes
equations in the cylindrical co-ordinate system is proposed to undertake the direct numerical
simulation of the Couette–Taylor system. Three major flow regimes are achieved, which
include the simulations of steady circular Couette flow, steady axisymmetric Taylor vortex
flow, and periodic spiral vortex flow. The evolution of intermediate flow structure for each
regime transition is also clearly observed on some direct numerical simulation. The locations
of the transitional boundaries between flow regimes obtained by experimental study are also
reproduced in this investigation. This study has demonstrated the fact that the present
unsteady, 3D numerical model can obtain an axisymmeric flow when it has to be axisymmetric
such as Couette and Taylor vortex flows, and obtain an unsteady non-axisymmetric flow, such
as periodic spiral vortex flow. In short, the present numerical code has the capacity to do the
direct numerical simulation for an unsteady, three-dimensional Couette–Taylor flow system. It
is concluded that the computational aspect is a useful alternative, in addition to the analytic
and experimental studies, to investigate the classic and challenging Couette–Taylor problem.
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APPENDIX A. NOMENCLATURE

aspect ratio, As=H/dAs
characteristic length, d=r2−r1d
pressurep

r radial co-ordinate
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inner radiusr1

outer radiusr2

Reynolds number, Re=r1V1d/yRe
inner cylinder Reynolds number, Re1=r1V1d/yRe1

outer cylinder Reynolds number, Re2=r2V2d/yRe2

timet
radial velocityu

6 azimuthal velocity
w axial velocity

axial co-ordinatez
radius ratio, h=r1/r2h

azimuthal co-ordinateu

dynamic viscositym

n kinematic viscosity
density of liquidr

inner cylinder rotating angular velocityV1

outer cylinder rotating angular velocityV2
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